Sponsorzy:

Comarch National Instruments

Licznik Geigera

Właśnie ukończyliśmy budowę licznika Geigera. Czujnik promieniowania jonizującego jest jednym z najważniejszych sensorów w naszym CanSacie. Musi on być trwały i odporny na wilgoć, gdyż musi bvy. Z drugiej strony, aby wzmacniać bardzo słabe sygnały z tuby Geigera należy użyć czułego tranzystora. Wysoka koncentracja pary wodnej może spowodować przeniesienie ładunku elektrycznego co prowadzi do zniszczenia obwodu.

Schemat

Obraz poniżej pokazuje końcowy schemat elektroniczny:

geiger_final_scheme

Obwód drukowany

Korzystając z Eagle’a narysowaliśmy również płytkę z obwodem:

pcb_geiger_final2

geiger_module

Konwerter i wzmacniacz dla naszej tuby Geigera:

cansat_tube2

Tuba Geigera w porównaniu z puszką.

 

Specyfikacja: 

Waga: 27 g (20 g konwerter i wzmacniacz,  7 g – tuba Geigera)

Wejściowe napięcie: 7.4 – 8.2 V

Wyjściowe napięcie: 340-450 V

Zakres pomiaru promieniowania jonizującego: up to 1440 uSv/h

Oprogramowanie

Stworzyliśmy dwie części testowego oprogramowania w NI LAbView.

geigermodule tests

Pierwsza wyświetla obecny poziom promieniowania, błąd pomiaru i czas trwania eksperymentu.

geigermodule tests

Druga wyświetla sygnał z tub – każdy szczyt wykresu to jedna cząsteczka elementarna.

Nowy sponsor

avt-logo

Mamy nowego sponsora, którym jest sklep AVT. Sklep AVT dał nam wiele niezbędnych elementów. Między innymi czujnik wilgotności i temperatury SHT11, układ scalony ATmega2560-16AU TQFP100, prototypową płytkę stykową 3260 pól stykowych BB-4T7D-01 i wiele drobnych elementów elektronicznych.

Our new sponsor

avt-logo
We have a new sponsor, which is the AVT shop. The AVT shop has given us a lot of the necessary elements. Among other things humidity and temperature sensor SHT11, integrated circuit ATmega2560-16AU TQFP100, 3260 prototype board pin contact areas 4T7D BB-01 and many electronic components.

Transceivers test

Last weekend we performed tests of our transceivers using different antennas and data transmission rates.

We tested two different antennas on the transmitting side (the equipped one and a simple wire) and two on the receiving side (the equipped one and a large directional one). All tests were performed with a 9600 baud rate.

We started by testing the equipped antennas to determine the safe data rate — one that would result in no or minimal data loss. While the guide recommended using 60% of the baud rate — which would be 5760 bits per second for 9600 baud — we discovered that it still resulted in minor data loss when transmitting data on a distance on about two-three metres and decided to use 5000 bps, which resulted in no losses.

We constructed two testing sets using the transceivers which could have their antennas easily swapped and rugged them against wintery conditions, so they could be used outside. They also allowed us to reprogram the transceivers to use a different baud rate, although we never used this feature.

Michał wrote a pair of Python scripts to test data transmission and integrity of received data. One would send a series of numbers via the serial interface, starting at one, repeating each one twice, at chosen speed; the other would receive data, display information about number of received items, and compare their validity (whether one number of the pair matched the other).

Test 1

We placed the transceivers on two hillsides facing each other, on a distance of about 1050 m. We were transmitting data using the equipped antenna and receiving it with the large directional one.

transceiver-test1

We performed all tests using 9600 baud rate with 5000 bits sent per second.

In a series of tests, we discovered that although there are no concerns about data integrity nor data loss at this distance with this hardware, the antenna only provided a range of about 90 degrees horizontally and 60 vertically; when directed outside this range, it sharply stopped receiving any data.

This prompted us to conduct another test at a larger distance, and to test the capabilities of equipped antenna as a receiver.

Łukasz as seen from Bartosz's position

Łukasz as seen from Bartosz’s position

Test 2

We placed the transmitter on a large hill (approx. 300 metres prominence) and the receiver on a plain below it.

At first we tested all combinations of antennas, on a distance of about 800 m. We confirmed the large antenna results, and we discovered that the equipped antennas were able to talk to each other on this distance with virtually no data loss. We received almost no data from the simple wire-based antenna, though.

Afterwards we tested the large antenna on a distance of about 1500 m. It was able to receive data with no losses regardless of the direction it was pointed at, proving that it has a minimal range it can operate at. While we managed to receive data with the equipped antenna as well, we had approximately 20% data loss, making it unviable for our purpose.

transceiver-test2

 

Bartosz with the large antenna

Bartosz with the large antenna

Map2d

Map2d jest kolejnym kawałkiem oprogramowania, które zrobiliśmy. Pozwala nam to na śledzenie toru lotu puszki w dwóch wymiarach. Wszystko działa w przeglądarce internetowej. Biblioteka open source OpenLayers została użyta w kodzie. Płytki zostały pobrane wcześniej, gdyż aplikacja jest przeznaczona do pracy w trybie offline.

Screenshot

Screenshot